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ABSTRACT
Validated instruments of knowledge are important for creating an
accepted and shared measurement for the most important part of
education – student learning. The Force Concept of Inventory from
Physics Education Research has had a significant impact across
STEM education. The Foundational CS1 (FCS1) and Second CS1
(SCS1) assessments were created and validated to further computing
education research. Now, ten years after the publication of the FCS1
assessment and five years after the release of the SCS1 assessment,
we can trace the use and the impact that these validated instruments
have had on the needs and knowledge of the computing education
community. In this paper, we examine how the FCS1 and SCS1
assessments have been used and adapted. We use this discussion
to guide a comparison between our field and physics education to
give a sense of direction to future research. In looking back on the
use of these validated instruments, we can better understand our
needs in computing education research and about our future needs
in assessment.
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1 INTRODUCTION
When the argument for the validity of the Foundational CS1 (FCS1)
assessment was first published in 2011 [65], the computing edu-
cation community had few validated instruments for computer
science (CS) knowledge. Concept inventories had been created for
a handful of introductory computing topics [22, 26, 62]. The first
validated instrument for CS1 knowledge in one language (Java) is
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likely Decker’s in 2007 [12]. However, the FCS1 was noteworthy for
providing a validated measure of knowledge across multiple pro-
gramming languages for a first-semester undergraduate computer
science course (CS1), which has always been a focus in computing
education research [49]. We distinguish here between validated
measures of knowledge and validated measures of other important
variables in education, such as attitudes [14].

The FCS1 was built using pseudocode for the programming
problems, which gave it a wide range of applications. The FCS1
assessment was created with the initial intent to compare learning
across CS1 courses taught in different languages. The pseudocode-
based FCS1 assessment was then validated with students learning
Java, Python, and MATLAB. However, the mere existence of a valid
CS1 assessment did not inherently make it useful to the community.
Access to the FCS1 assessment was limited to prevent saturation of
the assessment, which would weaken the argument for the validity
of the FCS1. In response, the FCS1 assessment was replicated and
validated to create the Second CS1 (SCS1) assessment in 2016 [43]
which could be distributed freely without danger of weakening
the FCS1 validation. The similarly multi-lingual pseudocode-based
SCS1 was released to the computing education community upon
request (as opposed to publicly available) and has been used by the
community in research studies accordingly.

We wrote this paper to understand the impact and use of a vali-
dated instrument within the computing education research com-
munity. We trace the impact of the FCS1 and SCS1 assessments
through published works citing the original papers, highlighting
how the assessments have been used and adapted. Although the
FCS1 and SCS1 are only two validated assessments, they serve as
exemplars to consider more broadly the role of assessments in CS
education and how assessments can influence other work. One
research question we hoped to answer was whether use of the FCS1
and SCS1 stayed within the argument for validity that we originally
constructed, or if either assessment was used for purposes beyond
the initial intent. We also connect back to the original vision of
the FCS1 and SCS1 by comparing where CS education research
is to where Physics education research was, in terms of validated
instruments of knowledge. Explicitly, the SCS1 was originally de-
veloped and distributed with the hopes of conducting a larger scale
study of methods for teaching computing, as Hake did with the
Force Concept Inventory (FCI) in Physics education research [25].
We end this paper by drawing on the discussions to suggest where
the future of assessment in computing education may go, based on
current community needs.

RQ1: Did uses of FCS1 and SCS1 stay within the orig-
inal arguments for validity?
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RQ2: Can we do a large-scale study of CS methods
based on use of FCS1 and SCS1?

2 DEVELOPMENT AND USE OF FCS1
The FCS1 was originally developed in the context of the trio of
CS1 courses at Georgia Institute of Technology (Georgia Tech) [19].
Georgia Tech required computer science for all of its students, and
found that a single course did not meet all students’ needs [23].
There were eventually three different courses offered: one in MAT-
LAB for Engineering students, one in Python for computer science
and science students, and a different Python course for liberal arts,
architecture, and business students. There was a question of how
to compare these courses, given they are all taught in different
programming languages but all serve the same introductory com-
puting requirement. Elliott Tew developed the FCS1 in pseudocode
so that it might be used to compare learning across different CS1
implementations in any of Java, MATLAB, or Python. She chose
MATLAB and Python because of the courses at Georgia Tech, and
she included Java because of its popularity as a CS1 language. She
validated the test with students at several institutions. Thus, from
the outset, the FCS1 was meant to serve a wide audience, beyond a
single programming language and a single institution.

The first challenge facing Elliott Tewwas defining the content for
the exam. There is not a single common syllabus or even set of topics
for the introductory CS course across the United States or around
the world. The most common approach to defining the topic list for
a concept inventory is to survey experts [61]. A Delphi approach
was being used to identify the content for a concept inventory
for CS1, but the range of topics was large [21]. Unlike the FCI in
Physics education, a concept inventory for CS1 could not rely on
decades of research about students’ alternative conceptualizations
of the real world. CS is a science of the artificial [56]. CS1 topics are
invented, and some are relatively new with little empirical work
describing students’ conceptualizations. For example, Elliott Tew
had little about object-oriented programming in the FCS1 because of
a large variance across classes for what constituted object-oriented
programming and because of a corresponding lack of literature
exploring student conceptualizations of different kinds of object-
oriented programming [63]. The developers of the FCS1 needed a
core set of concepts for which a reasonable set of distractors could
be defined. Elliott Tew used a textbook analysis technique to define
a common set of concepts, which were then filtered through the
use of recommended curriculum standards and then expert review
[64].

One of the challenges to writing a multiple-choice question as-
sessment is determining the distractors. The right answer is obvious,
but the wrong answers have to be close enough to the correct an-
swer to serve to discriminate different conceptual understandings.
Elliott Tew gave the FCS1 problems to students studying MAT-
LAB, Java, and Python as open-ended questions, without answer
choices. She then took the most popular wrong answers as her
distractors. Elliott Tew found the most common wrong answers
were mostly the same across all three languages [63]. Some of the
wrong answers were easily explained by language-specific features,
e.g., Elliott Tew’s pseudocode used zero-based array indexing (as
in Python and Java) which was a source of error for the students

Table 1: Average Scores on the FCS1 Assessment by Quartile.
Reproduced from [63] with permission.

Quartile n Mean ∆ σ

4 203 2.31 3.649
3 231 3.76 3.313
2 226 4.81 3.495
1 190 6.20 3.671

who learned MATLAB in their CS1 (since MATLAB indexes arrays
starting at one). The commonality of errors across languages is
also an interesting finding deserving of further investigation – that
there is a commonality in alternative conceptualizations in different
programming language contexts.

The argument for the validity of the FCS1 had three parts [64].
First, a panel of experts reviewed the content to reach an agreement
that the concepts addressed were part of a CS1 course. Second,
she gave all CS1 student participants two exams: one in whatever
language they studied (Java, MATLAB, or Python), and one in
pseudocode. The problems were written to be isomorphic, and
the exams were given some time apart and counter-balanced to
control for ordering effects. She looked for a correlation between
the pseudocode assessment and the “native” language assessment,
to validate that the pseudocode measured the same concepts as in
the studied language. Finally, she collected the final grades from
the CS1 students to validate that the pseudocode assessment was
testing what the CS1 instructors valued.

2.1 The Use of FCS1
The main use of FCS1 was in Elliott Tew’s dissertation [63]. She
found that performance on the FCS1 did differ between the three
CS1 courses at Georgia Tech. She also found that there was a cost
to the use of pseudocode. The students who scored the best on the
pseudocode assessment had the closest match in scores between
the pseudocode assessment and the language-specific assessment
— averaging a difference in 2.31 answers out of the 27 questions
on the exams (see Table 1). But the average difference increases
dramatically. For the bottom two quartiles, the difference is 17%
(4.8 questions out of 27) and 22% (6.2 questions out of 27). It’s not
too difficult for students in the best-performing quartile to transfer
their knowledge to pseudocode, but it’s a significant challenge for
the lowest-performing two quartiles.

The FCS1 was also used in the 2013 ITiCSE Working Group [69]
that revisited the influential 2001McCrackenWorking Group report
[41]. The 2001 McCracken Working Group report was among the
first studies to show that problems with learning programming in
CS1 were a generalized phenomenon, seen in multiple institutions
in multiple countries [41]. The 2013 study replicated the original
finding and used the FCS1 as a measure of conceptual knowledge.
Scores on the FCS1 were strongly positively correlated with the
ability to program successfully [69].

There were other unpublished uses of the FCS1 examining the
effectiveness of learning interventions. Studies comparing teaching
strategies at the University of British Columbia in the context of the
Carl Wieman Science Education Initiative (CWSEI) used FCS1 to
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establish a baseline and make comparisons. The goal of the CWSEI
project was to improve instruction and student learning in the
specific, local context. Since these findings would not generalize to
a broader context, the results remain unpublished.

Due to concerns about the FCS1 becoming invalidated through
broad dissemination (e.g., by being posted publicly on the Internet),
there were few direct uses of the FCS1 by students. However, the
FCS1 was successfully used as a model for creating other assess-
ments. For example, Lee and Ko [38] created a pseudocode assess-
ment to measure learning in different online learning contexts, from
games to tutorials. They used the FCS1’s examples, descriptions,
and two-page pseudo-code guide in generating their exam. They
validated their replicated instrument using Amazon Mechanical
Turk workers and then used their instrument to compare several
different settings.

We do not include a further analysis of the literature since many
of the citations to any of the FCS1 papers [63–65] reference it as
an example of a validated measure of knowledge for CS1. Rather
than a systematic search of the literature, we have included here all
legal uses of the FCS1. These are all the studies of the FCS1 whose
authors requested access through the creators of the FCS1.

3 DEVELOPMENT AND USE OF SCS1
To protect the FCS1 and still have an instrument available to the
community, the SCS1 was created as a replication of the FCS1 which
could be distributed without potentially compromising the FCS1
[43]. The SCS1 had a simpler replication and validation process.
Rather than compare against isomorphic tests in each of Java, MAT-
LAB, and Python, the SCS1 is a pseudocode-based test that was
only validated against the FCS1. Near the end of the introductory
computing courses at one institution, 183 students took the SCS1
and the FCS1, one week apart and counter-balanced for order ef-
fects. The correlation between the SCS1 and FCS1 was high and
sufficient to establish an argument for validity. However, because
the SCS1 was created by writing isomorphic questions to the FCS1
to maintain FCS1’s validity argument, that meant little was changed
to alter or improve on the FCS1. As a result, the previous difficulty
of the FCS1 assessment, as presented in [63], was transferred to the
SCS1. The difficulty and discrimination of each SCS1 item can be
seen in Table 2, where 22 items were identified as “hard” and no
items were identified as “easy.”

3.1 The Use of SCS1
In the original paper detailing the replication and validation of
the SCS1 assessment, Parker et al. encouraged free and open use
of their assessment. Since then, the SCS1 assessment has been
used in many research studies in a myriad of ways. To understand
the use and evolution of the SCS1 assessment, we conducted a
search on Google Scholar in early January 2021 of papers that cite
the SCS1 publication [43]. Our search returned 70 papers, which
we then read and recorded how they used the SCS1 or cited the
original publication. Our approach does bias our understanding
of how the SCS1 is being used since we only examined published
work or dissertations. Publication bias is a persistent problem in
any review of literature [18]. We also recognize the constraints of
using a research database at a given point in time. For example,

because of the way Google Scholar indexes papers, some papers
that were not technically published yet (e.g. SIGCSE 2021) were
included in our analysis if pre-prints of the articles were posted
on authors’ website and were indexed by Google Scholar. Papers
were removed from our analysis if they only briefly mention the
SCS1. This includes 13 papers that cite SCS1 as an example of
an assessment in CS with an argument for validity; six papers
that reference SCS1 in their related works section, generally as an
example of work being done in CS education; two papers that use
the SCS1 paper to support arguments for reliability and validity of
assessments; and two papers that use parts of the SCS1 paper, but
not the assessment itself (e.g., the scatterplot was reproduced in
[24], and the think-aloud methods were used in [29]). Additionally,
three papers used the SCS1 assessment to create a new instrument,
but the process was not described in enough detail to include in
our discussion. Below, we detail some of the different ways that
the SCS1 assessment has been used in the computing education
community. A summary of these findings can be found in Table 3.

3.1.1 To Learn About Learning. The creators of the SCS1 assess-
ment wrote that they welcomed the research community to use
the SCS1 assessment to measure performance or learning gains
[43]. Many studies have been published since then using the SCS1
assessment in exactly this manner [5, 31–33, 42, 75, 76]. Here we
detail these studies and the findings that the SCS1 assessment has
been used to support.

One area of study that often uses the SCS1 assessment is the topic
of program tracing. In one study, the SCS1 assessment was used to
show support for a comprehension-first and theoretically-informed
pedagogy for program tracing via an interactive tutorial called
PLTutor [42]. In this study, undergraduate students were recruited
as they began a CS1 course in Java. Additionally, some questions
from the SCS1 assessment were used in a pre- and post-test in a
study that showed that teaching students a program tracing strategy
can lead to higher student scores on program tracing problems and
the course midterm [76]. 24 students were recruited who had com-
pleted one or fewer CS courses, all of whom were undergraduate
students except for one who had a Master’s degree.

The SCS1 assessment has also been used to investigate online
learning environments and tools [31–33, 75]. The SCS1 assessment
was used to show that online undergraduate students can attain
comparable learning outcomes to students in traditional, in-person
learning settings [32]. In fact, of students who reported putting
forth their best effort on taking the SCS1 assessment, students in
the online CS1 course scored statistically significantly higher on
the SCS1 as a post-test than students who were in the traditional
section [32]. These findings were replicated in a later study with
new students [33]. Furthermore, these findings continue to hold
when the online CS1 course is supported by an AI for feedback
and evaluation [31]. Questions from the SCS1 assessment were also
used to investigate a self-directed online Python learning tool. In a
study of 79 novice programmers (defined as having had at most non-
Python programming course and never learned or used Python),
findings supported the claim that more agency and information can
lead to higher student motivation, but not necessarily improved
student learning [75].
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Table 2: Item response theory classifications of SCS1 questions. Reproduced from [43] with permission.

Difficulty (0-100%)
Hard (0-50%) Moderate (50-85%) Easy (85-100%) Total

Discrimination

Poor (<0.1) 5, 8, 15, 18, 20, 24, 27 – – 7 items
Fair (0.1-0.3) 4,6,7,9,10,11,12,13,16, 23 – 15 items

17,21,22,25,26
Good (>0.3) 14 1, 2, 3, 19 – 5 items
Total 22 items 5 items 0 items 27 items

Table 3: A summary of the ways the FCS1 and SCS1 have been used and the accompanying papers

To Learn about Learning FCS1 Programming language differences [63]
2013 ITiCSE Working Group [69]

SCS1 Program Tracing: [42, 76]
Online Learning: [31–33, 75]
Comparing Block-based with Text-based: [5]

To Build More Valid Instruments FCS1 Gidget [38]
SCS1 [43]

SCS1 Self Evaluation Instrument (SEI): [15]
Basic Data Structures Inventory (BDSI): [48, 61, 77]

Improving

SCS1

Item Response Theory: [74]
Adapting 12 question subset: [45]

9 question subset: [6] (SCS1R)
Translating Java: [17]

Python: [37] (mSCS1), [58]
MATLAB: [2, 3] (MCS1)
German: [66, 67]
Finnish: [15]

With the rise of block-based programming environments, ques-
tions have been raised about how block-based programming and
block-based programming with text-based programming (dual-
modality programming) compare to text-based programming. For
a study comparing dual-modality programming environments and
instruction with text-based approaches to instruction, participant
learning was measured via the SCS1 assessment and course exams
for 673 undergraduates in a semester-long CS1 course [5]. The
study found that students performed better on course exams when
they were taught using dual-modality representations and were
provided dual-modality tools. However, the scores were not statis-
tically significantly different on the SCS1 assessment, possibly due
to the hard questions and lack of free-response options.

3.1.2 To Build More Computing Learning Instruments. Many of the
published works that cite the seminal SCS1 paper use it to support
their arguments for more assessments [4, 13, 16, 35, 36, 39, 46],
citing the line “there are not many valid instruments for CS1” [43].
However, as Margulieux et al. point out, there are multiple comput-
ing standardized measurement assessments [40]. Not all of these
assessments seek to measure computing knowledge, as some mea-
sure self-efficacy, programming attitudes, or cognitive load, to name
a few. The claim that there can always be more standardized assess-
ment instruments in computing is perhaps a stronger statement
than saying there are “not many” of such instruments. Moving

beyond statements of the community needing more standardized
assessments, a few groups have embarked on the endeavor to create
entirely new assessment instruments with questions from the SCS1
assessment, and the process laid out in the SCS1 publication [43],
as inspiration.

The SCS1 assessment is recommended to take an hour to com-
plete and has difficult questions that were identified in the initial
validation process. These factors can make the assessment inacces-
sible to many students and researchers. In an effort to create a more
lightweight assessment that is less obtrusive, Duran et al. created
the SEI (self-evaluation instrument) to rapidly assess student under-
standing of basic programming knowledge [15]. Duran et al. used
the SCS1 assessment, after translating it into Finnish, to create an
argument for validity for the SEI. Recruited from a basic CS course
taught in Java and offered as a MOOC, 440 students completed the
Finnish SCS1. Students were more likely to volunteer to take the SEI
than the SCS1 assessment, and students provided negative feedback
for the SCS1 assessment more often than the SEI. However, both
the scores on the SEI and the SCS1 assessment correlated with the
course exam. The researchers also found that some questions that
were difficult for students in other studies and contexts (e.g. [74])
were easy for their students, and other questions that were easy
for others were difficult for them, suggesting an avenue for future
research on assessments in computing. The prototype SEI can be
found at https://goo.gl/nGR9Th.

https://goo.gl/nGR9Th
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The Basic Data Structures Inventory (BDSI) was created as a
concept inventory to cover topics typically included in a CS2 course,
or the course that teaches basic data structures [77]. The SCS1
assessment was not directly used for the creation of the BDSI since
the SCS1 was intended for CS1 courses and thus a different set of
concepts. However, the pseudocode that the SCS1 assessment is
based on was used for the BDSI [77]. Additionally, the BDSI was
created following similar steps as the FCS1 and SCS1, including
expert panels, short response questions that were then converted
to multiple-choice questions, validation interviews, and statistical
validation, including classical test theory and reliability [48, 61]. The
BDSI is available at https://groups.google.com/forum/#!forum/cs2-
bdsi-concept-inventory.

4 ADAPTING AND REVISING A VALIDATED
ASSESSMENT

When the SCS1 assessment was released to the community, Parker
et al. concluded their paper with a call for more assessments, in-
cluding revising the SCS1 assessment [43]. Over the past five years,
the SCS1 assessment has been investigated, revised, and adapted
for broader use. Part of the need for revision is due to the difficulty
of the SCS1 assessment, as previously discussed and presented in
Table 2. This difficulty level is noted by some researchers in the com-
munity as a reason for not using the assessment [28]. As a result,
many research teams have sought to improve the SCS1 assessment
for wider use by the community.

4.1 Improving the SCS1
Since the SCS1 assessment’s release to the community, a research
group at the University of Washington has conducted further analy-
sis on the SCS1 assessment to identify specific questions that could
be improved. Where the original SCS1 paper included Classical Test
Theory, Xie et al. used Item Response Theory to identify problem-
atic questions [74]. Xie et al. used SCS1 responses from 425 pre-CS1
students and 64 pre-CS2 students. Their work can help identify
which questions to focus on to improve the SCS1 assessment as
a whole. Xie et al. also conclude that the SCS1 assessment may
be best used as a post-test and inappropriate to use as a pre-test
due to its difficulty and potential floor-effects. This has led some
studies to refrain from using the SCS1 assessment due to concerns
of its appropriateness as a pre-test administered before a CS learn-
ing experience [57, 70]. This is not an unfair categorization of the
SCS1, especially given that it wasn’t explicitly designed for use
as a pre-test. Rather, it was designed as the FCS1 was: to be used
to compare different CS1 classrooms with different programming
languages. Although the SCS1 is convenient to use as a pre- and
post- test because the scoring is on the same scale, making it easy
to perceive growth or improvement in CS1 concepts, more work
should be done to either alter the SCS1 or create an accompanying
pre-test to an SCS1 post-test.

4.2 Shortening the SCS1
The original SCS1 assessment was administered within a 60 minute
time period [43]. However, this can be too long for a class period,
which might typically be 50 minutes. This, combined with the
acknowledgment that it is a difficult assessment, can reduce the

viability of the SCS1 assessment as a research tool. As such, there
have been various efforts to shorten the SCS1 assessment [6, 17, 45].

Parker and Guzdial, the original creators of the SCS1 assessment,
modified the SCS1 themselves, parsing it down to a 12 question
test from the original 27 questions [45]. The questions were chosen
based on their original difficulty and discrimination values pub-
lished [43]. The original format of the assessment was maintained
in terms of having three types of questions (definitional, tracing,
and code completion), which were for each of four content areas (if
statement, for loops, while loops, and logical operators). This effort
was undertaken due to the adapted SCS1 assessment only being one
piece of their study, where they asked undergraduate students near
the end of their first undergraduate computing course to also take
an access survey, spatial reasoning test, and socioeconomic status
questionnaire [45]. Findings from their study showed a connection
between socioeconomic status and CS achievement (as measured
by the adapted SCS1 assessment), which was mediated by spatial
ability and not by access to computing.

A research group out of the University of Nebraska, Lincoln
has also published work that used a shortened version of the SCS1
assessment [6–8]. The revised SCS1 assessment (termed ’SCS1R’)
was created by keeping the original content of the assessment rather
than the format of question types [6]. One question was selected
for each of the nine concepts to try to keep the test to a maximum
of 20 minutes. To choose which question to represent a content
area, the authors say they ‘selected the one question we judged
to be the best fit for our study’ [6]. Bockmon et al. recruited 635
undergraduate students in introductory computing courses to pilot
the SCS1R. The research team used SCS1R to further link spatial
skills and CS, such as how training in spatial skills can improve CS
performance and enjoyment (n=197 undergraduate CS1 students)
[8] and connecting spatial skills with programming ability (274
control-group participants, 71 experimental-group participants, all
from an undergraduate CS1 course) [7].

4.3 Translating the SCS1
One critical design element of the FCS1 and SCS1 assessments was
the pseudocode language they were written in. Because the as-
sessments were designed to be used across courses using different
programming languages, the assessements could not be written
in one particular programming language [63], as discussed earlier.
Despite the goal of creating an assessment that could be used by a
multitude of students learning different languages, many research
teams have chosen to replicate the SCS1 assessment into specific
programming languages [2, 3, 17, 37, 58]. In one instance, the mo-
tivation for moving away from the pseudocode-based assessment
was that the pseudocode was non-intuitive and concerns were
raised about burdening students with interpreting a pseudolan-
guage, which was discussed as a concern with the results of the
FCS1 validation studies [37]. In this case, the SCS1 assessment was
translated into Python, in addition to being shortened for timing
concerns and content alignment, and administered to 44 undergrad-
uate students at the start of a Python-based CS2 course. Layman et
al. found a connection between their version of the SCS1 (mSCS1;
modified SCS1) and CS2 performance [37]. Other research teams
have taken a similar approach of translating a subset of the SCS1

https://groups.google.com/forum/#!forum/cs2-bdsi-concept-inventory
https://groups.google.com/forum/#!forum/cs2-bdsi-concept-inventory
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assessment into Python, though also adding 127 short, deliberate
practice questions, for use in a pre-CS2 assessment [58]. Another
case chose to translate some questions of the SCS1 questions into
Java for use with 42 students in a CS1 course taught in Java [17].
Duvall et al. cited that the pseudocode language was too similar to
Python and their students had difficulty understanding the ques-
tions. In another instance, the SCS1 assessment was translated into
MATLAB to provide a MATLAB-specific concept inventory (MCS1;
MATLAB Computer Science 1 Assessment) [2, 3]. The MCS1 was pi-
loted during think-aloud interviews with six first-year engineering
students.

The SCS1 assessment is a reasonable starting point for develop-
ing language-specific tools given the arguments for validity that
support it. The creation of language-specific assessments should
also include language-specific bugs and conceptions [60]. Wein-
trop and Wilensky found with their commutative assessment that
blocks and text programming led to different bugs and miscon-
ceptions [73]. Elliott Tew found some of these in her validation
of the FCS1 but explicitly designed the FCS1 around them, focus-
ing on the commonalities rather than the language-specific issues
[64]. A language-specific tool could start from SCS1 for validation
but would have to develop different distractors that highlight the
language-specific learning challenges.

Beyond translating the SCS1 assessment into different program-
ming languages, there have also been efforts to translate the SCS1
into written languages other than English. A research team in Ger-
many detail the steps they took to translate the SCS1 to German
[66, 67]. Timmerman et al. then used the German translation of the
SCS1 to monitor student learning in a CS1 course as the course
was revised. A team in Finland followed Timmerman et al.’s steps
and translated the SCS1 into Finnish [15]. This was then used to
create the SEI, described in Section 3.1.2. There may be even more
written language translations of the SCS1 out there given the use of
SCS1 across the globe, but these are the only published instances of
such an occurrence as of the time we conducted our Google Scholar
search.

5 COMPARING ASSESSMENT USE IN
COMPUTING EDUCATION TO PHYSICS
EDUCATION

The Force Concept Inventory (FCI) had a dramatic impact on physics
education and far beyond. Here, we discuss key papers in the devel-
opment and use of the FCI in order to compare and contrast to the
development and use of the FCS1 and SCS1. We did not conduct
a systemic literature review of the FCI but instead consider one
of the original goals for the SCS1, which was to conduct a similar
analysis as Hake did.

The FCI was a validated instrument that focused solely on con-
cepts of force from an introductory physics perspective [27]. It was
noteworthy for building on the knowledge of students’ alterna-
tive conceptions of force. Elliott Tew had to develop a process for
identifying good distractors for her FCS1 instrument. Hestenes and
colleagues were able to draw on decades of research that told them
how students explained force to themselves incorrectly. The wrong
answers on the FCI were known to be common among students.

Directly, the FCI led to a significant finding in the development
of the argument for evidence-based research methods. Hake’s 1998
paper drew on over 6,000 test-takers to argue that active-learning
techniques (“interactive learning” was the term used at the time)
led to better learning outcomes [25]. Hake had student responses
to the FCI collected both before and after courses (pre and post) in
a central repository, along with data about the courses in which the
test-takers were enrolled1. Using this central repository, he was able
to make a broad statement that influenced physics education, and
also make a broader argument about active learning techniques in
STEM classes. Hake had data on each use of the FCI, and he reported
separately results from high schools, colleges, and universities.

Indirectly, the FCI influenced the development of novel active-
learning techniques such as peer instruction. Eric Mazur famously
gave the FCI to his students at Harvard, expecting them to do very
well on it. When his students performed worse than he expected,
he realized that he needed to improve his own teaching – a vali-
dated instrument had demonstrated what his students were actually
learning [9]. Mazur invented peer instruction as a way to improve
his student’s performance on the FCI [10]. Peer instruction has now
grown far beyond physics and is one of the most successful active
learning techniques in computer science as well [47].

When the validation of the SCS1 assessment was initially pub-
lished, the authors wrote a vision on “Following Hake’s Lead."
Parker et al. proposed that their assessment could be used for a
large-scale study to determine the effectiveness of learning interven-
tions. However, though the SCS1 assessment has been administered
many times, a ‘Hake’ study is unlikely to develop any time soon,
which is our answer to RQ2. Part of this is due to the context in
which SCS1 is given. The SCS1 has been used in a variety of learning
environments to answer a myriad of research questions. Though
all these data points could be collapsed to analyze the assessment
at a large scale, the large range of variables that are confounded
with each data point would make any claims drawn from such an
analysis suspect.

In the end, the SCS1 creators chose not to follow Hake’s lead,
and that decision may say something deep and interesting about
the difference between computing education research and physics
education research. The work by Hestenes, Hake, Mazur, and others
around the FCI took place in higher-education introductory physics
courses in the United States. When considering the range of people
between their teens and twenties just in the United States, those in
higher education Physics classes is a narrow subset. Further, FCI
(as the name suggests) is only about force. It doesn’t aim to cover
all of an introductory physics course. It’s about one specific topic
in introductory physics, and it’s a topic that is widely considered
fundamental. In contrast, SCS1 has already been used in a much
broader range of classes and contexts than was the FCI as reflected
in Hake’s study. The variation in SCS1 is too large to ignore, and
there is too little use of SCS1 in directly comparable contexts to
make a Hake-like analysis possible.

1From request for FCI access “Instructor’s name and institution, number of students
enrolled, pre/post test scores, standard deviations where available, and normalized
gains” and then via follow-up survey, “pre/post testing method; statistical results;
institution; type of students; activities of the students; and the instructor’s educational
experience, outlook, beliefs, orientation, resources, and teaching methods" [25]
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6 DISCUSSION: COMMUNITY NEEDS AND
THE FUTURE OF ASSESSMENT IN
COMPUTING EDUCATION

The arguments for computing education vary around the world.
States in the United States (often associated with the “CS for All”
movement) tend to make a vocational argument [71]. There is a
shortage of labor in computing, computer science, and software
development. The argument is to teach everyone about computer
science in order to fill those jobs. The “Computing at School” move-
ment (CAS) in the United Kingdom makes an argument about com-
puting as a fundamental field, like physics and mathematics [30].
In the same way that everyone should have some understanding
of the science of the physical world (e.g., physics, chemistry, and
biology), the CAS movement argues that students should also learn
about the science of the digital world.

If the goals vary, then we might expect the instruction to do so
as well. A course that prepares students for the workforce may well
be different from a course that teaches introductory CS as a science.
In the United States, this distinction might be seen comparing the
Advanced Placement exam and course for “CS A” (APCSA) which
aims to prepare students for CS1 in a CS major undergraduate
curriculum and the exam and course for “CS Principles” (APCSP)
which aims to be a broad introduction to the field of computer
science [1]. Teaching for different learning objectives will likely
vary.

If the courses vary significantly, then so might we expect the
student audience and who succeeds at the course. We see this in
the distinction between APCSA and APCSP. APCSP attracts more
diverse students than APCSA, and APCSP students have different
outcomes [54]. Different courses with different learning objectives
will likely attract different students and will certainly require dif-
ferent assessments. Not only are different assessments required
because of the course material, but to promote equity among stu-
dent populations. Differential Item Functioning methods have not
been used with either the FCS1 or SCS1, but should be to under-
stand how different student groups perform on the assessments
[11]. Constructing courses and curricula to promote equity will only
work if the assessments for measuring learning and achievement
have also been updated to support equity goals.

To answer our first research question (RQ1), about how use of
FCS1 and SCS1 matched the arguments for validity used in their
development, we find that FCS1 and SCS1 have been used to assess
introductory computer science in general and, more specifically,
to assess introduction to programming courses. Those assessment
goals are broader than the validation arguments for FCS1 and SCS1.
Both instruments only ask questions about programming concepts,
because that was the common denominator that Elliott Tew found
when she looked across CS1 textbooks and standards [64]. FCS1 and
SCS1 were only validated with undergraduate CS students taking
in-person (face to face) classes in residential college settings. While
several institutions and courses participated in the validation stud-
ies, all of the courses addressed a narrow segment of the population
in a rarefied context.

In most published studies, the FCS1 and SCS1 are being used
in residential collegiate settings around a CS1 course taught in
Python or Java – thus, our answer to RQ1 is “mostly.” However,

the SCS1 is also being used with audiences and contexts for which
there is no argument for validity [34]. This was true even when
the SCS1 was published and use cases were presented, including
using the SCS1 with teachers [43]. We also noticed the SCS1 being
used in the published works in online settings or in CS2, settings
which are different than the one in which SCS1 was validated. We
only review published papers. The SCS1 and FCS1 might be used
with pre-service teachers, with K-12 students, with languages other
than those three, with introductory courses whose goals (and in-
struction) are different than CS1, or in modality contexts other
than in-person classes in residential colleges. The FCS1 and SCS1
were developed as multi-lingual assessments, but the languages
chosen were relatively similar compared to languages for functional
programming or declarative logic programming. We cannot make
any claim of validity beyond these imperative languages. While re-
searchers might use FCS1 and SCS1 somewhere other than CS1 in a
residential college setting with these three programming languages,
the validity argument has to be made anew. The whole point of a
validated assessment is to establish a commonly accepted measure.
If there is no argument that it is reasonable to use this measure for
a given research context, the community of computing education
researchers has no reason to accept the results.

Researchers who use the FCS1 or SCS1 in novel research contexts
may be treating “programming” as a solitary conceptual topic or
unit, like “force” in the FCI. It is unlikely that programming is a
unitary concept, that “programming” is a single set of concepts or
skills that we can assess. We have ample evidence that transfer be-
tween programming languages is difficult [55, 68]. How much more
complicated might that transfer be if the classes in which we might
teach programming have different goals, student audiences, levels,
and modalities. Programming means different things in different
contexts. Programming in APCSA is different from programming
in APCSP.

The FCS1 and SCS1 are still useful to computing education re-
searchers when used in contexts for which they have been validated.
They can also be useful as models for other assessments, e.g., perfor-
mance on the new assessments might be compared to performance
on FCS1 and SCS1 as we see in several of the published papers.
SCS1 might also be validated for new contexts, as in new languages.
But it’s pretty clear that computing education researchers might
want to assess learning in other areas related to the big concept of
programming, and assess other important aspects of their educa-
tional experience, from sense of belonging [14, 72] to self-efficacy
[50, 59].

A final lesson from the FCI is that FCS1 and SCS1 are at a dramati-
cally different granularity. Force is one part of a physics course. CS1
is an entire course with many parts in it. The computing education
research community might be well-served by finer-grained concept
inventories. We might focus on programming statements, like if
and for, though past research suggests that those do not work as
knowledge units [53]. We might instead focus on conceptual units,
such as conditional testing, Boolean expressions, repetition (com-
bining iteration and recursion), mutability, or even just sequential
execution, which we do know is a challenge for many learners [52].
We might combine these conceptual units to focus on learning tra-
jectories [20, 44, 51, 52]. Or we might focus on skills, like the ability
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to trace execution or to debug. Or we might focus on deeper con-
cepts, like the idea that the computer transforms representations
(from code to HTML) into execution or Web pages.

Computing education research should aim to reach agreement on
validated assessments, and also on what we’re assessing.We need to
find some agreement on what the core concepts are – whether they
are variables, state, or mutability – if we want to be talking about
the same things across papers. If we want to have a research dialog
about student understanding of a computational concept or skill,
we need a common definition, and common validated assessments
can form a stronger foundation for our discipline.
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